Про аппаратное декодирование, или зачем нужна интегрированная графика
На сию графоманию подтолкнул меня пост Путеводитель по интегрированной графике , где @myironcomp неплохо расписал об особенностях использования интегрированной графики в играх (за что ему респект). Но вот про другое не менее важное и используемое назначение — воспроизведение видеофайлов, он, увы, упомянуть забыл. Исправим этот момент)
Т.к. пост больше для не особо опытного пользователя, продвинутым огромная просьба сильно помидорами не закидывать. Конструктивная критика приветствуется.
И так, купили вы себе новенький классный монитор или телевизор, с поддержкой UltraHD, и даже HDR, приготовили место, поставили, включили. Надо что-то на нём смотреть! И желательно чтобы оно раскрыло свой потенциал — контент тоже нужен в UltraHD и HDR, и чем качественнее картинка, тем лучше. Нашли, скачали. тут кроется первый затык. Практически весь UltraHD-видеоконтент закодирован в HEVC (H.265).
Чем читать HEVC? В принципе, если это телевизор, то у него наверняка будет USB-порт, плюс встроенная аппаратная поддержка данного формата. Но туда-сюда таскать каждый раз флешку/хард с видеофайлами может быть утомительно. Да и пост все-таки о компах 🙂
В общем, поставим вопрос по-другому: какое должно быть железо, чтобы нормально воспроизводить HEVC с компа? И если комп есть — что сделать, чтобы достичь этой цели?
Будем отталкиваться от следующих фактов:
1. HEVC прожорлив. Без аппаратной поддержки, т.е. силами только самих процессорных ядер, процессор будет загружен достаточно сильно. Вплоть до того, что его может и не хватить — для примера, i7 3770K, у которого 4 ядра и 8 потоков, с 20 Мбитным HEVC уже не справляется.
2. Аппаратное ускорение на компьютерах (и ноутбуках/моноблоках) целиком и полностью привязано к графическому чипу.
3. Современность (дата выпуска) техники важнее её производительности. Набор поддерживаемых форматов привязан к графическому чипу навсегда. Это значит, что если вы когда-то купили приличную видеокарту, и она до сих пор неплохо тянет игры, но с завода производитель не добавил поддержку того же HEVC — значит читать она его никогда не будет.
Да, увы, реальность жестока — новые технологии требуют новых затрат. Современному контенту и железо надо современное.
Теперь практическая сторона.
Пункт 1. Как посмотреть аппаратную поддержку того, что есть.
Чтобы не гадать на кофейной гуще, можно использовать DXVA Checker, который бесплатен и доступен на официальном сайте. Качаете, запускаете, видите примерно такое окно (картинка из интернета):
Здесь можно видеть, что мы можем смотреть HEVC без HDR (HEVC_VLD_Main) в практически любых разрешениях вплоть до 8К, и HEVC с HDR (HEVC_VLD_Main10) в разрешениях вплоть до 4К.
И тут мы натыкаемся на еще одну важную деталь: поддержка HDR идёт отдельно, и её может и не быть, даже если сам чип умеет в HEVC!
Пункт 2. Апгрейд существующей машины.
Допустим, мы посмотрели в DXVA Checker, и узрели там, что поддержки так нужного нам HEVC у нас нет. Если еще и напротив H264 указано «SD/HD/FHD», то вообще катастрофа — не видать нам красот UltraHD. Что делать?
1. Купить новую видеокарту взамен старой. Вариант подходит, если проц по производительности более-менее адекватный, но в компе стоит или затычка, или просто не особо производительная карта.
2. Воткнуть слабенькую, но современную видеокарту во второй слот. Этот вариант подходит, если уже есть достаточно производительная видеокарта, которую хватает для игр, но она не настолько современная, чтобы иметь аппаратную поддержку нужного нам формата.
3. Заменить процессор, или вообще сделать апгрейд всей платформы. Этот вариант актуален тогда, когда у вас уже есть производительная видеокарта, вторую воткнуть физически нельзя (например, на плате нет второго подходящего слота, и вообще она mATX), а новая карта стоит конских денег. Чтобы этот вариант работал — нужно залезть в BIOS, и принудительно включить там интегрированную графику (по-умолчанию, интегрированная графика обычно отключается при наличии дискретной).
Но как понять, что брать? Особенно если не новое из магазина, а с какого-нибудь авито.
Аппаратное декодирование построено на следующих технологиях (ссылки на таблицу поддержки):
1. QuickSync в случае с Intel.
2. NVDEC в случае с NVIDIA
3. Unified Video Decoder у чипов AMD, вышедших до 2017 года
4. Video Core Next у чипов AMD, вышедших с 2018 года (поддержка HEVC есть у всех)
Если коротко и по существу, то у Intel поддержка обычного HEVC начинается с 6 поколения, а поддержка HEVC с HDR — с 7-го. У NVIDIA из старых карт поддержка HEVC c HDR есть на 750, 950, 960, а также на всех современных картах, начиная с 1030. AMD добавил поддержку HEVC в Rx300 и HDR в 400 серии.
Пункт 3. Покупка нового ПК.
Собственно, добрались до самого главного — а причем тут интегрированная графика-то? Дело в том, что если вы собираете (или покупаете собранную) новую машину, с целями «работа в офисе, интернете, просмотр фильмов и максимум танки погонять на минималках), то у вас будет два варианта:
1. Процессор без видеоядра+затычка
2. Процессор с встроенным видеоядром.
И тут важно помнить, что единственная доступная в магазинах затычка, у которой есть HEVC — это GT1030 за 7к рублей, всякие 710 и 730 — не подойдут. А вот графика, встроенная в новенький процессор — вполне себе поддерживает. В случае же с вариантом «Куплю сейчас процессор без видеоядра, затычку GT710, а потом через годик-другой воткну нормальную карту» — вы рискуете этот годик-другой сидеть без возможности смотреть UltraHD-контент.
Другой момент, который нужно учесть, покупая комп — интерфейсы на мат.плате. Дело в том, что от того, какой используется интерфейс, зависит максимальное разрешение, которое будет использоваться при подключении к нему дисплея. Тоже самое относится и к кабелю.
Вот ограничения для DisplayPort:
Поэтому, не стоит недооценивать интегрированную графику. Она может вас выручить там, где дискретная попросту не имеет поддержки того, что требуется.
В общем-то, вроде бы всё. Кто это всё прочёл — тот молодец 🙂
Поддержать
1.5K пост 5.1K подписчиков
Подписаться Добавить пост
Правила сообщества
Уважать мнение других
Не переходить на личности, даже при споре, «Что лучше Intel или AMD».
Матерится, выражая эмоции можно, но опять же, не в адрес оппонента или собеседника.
Отдельно для «свидетелей LINUX»: Вам здесь рады, но и к Вам пожелание быть проще и понятней.
Не вводить в заблуждение заведомо неверными и вредными советами, даже в шутку. Если же пошутить хочется, помечайте это в комментарии, добавив слово «шутка», или другим понятным словом, что бы в дальнейшем данный комментарий не воспринимался серьезно.
В публикуемом посте настоятельно рекомендуется указывать конфигурацию ПК (ноутбука) и операционную систему. А также марки и модели комплектующих.
Указывайте теги «Компьютер» «Ноутбук» «Программное обеспечение» «сборка компьютера» «Операционная система» «Драйвер» «Комплектующие».
2 года назад
4к контент в контейнере mkv отлично передает на телик plex, декодируется видео силами телика. У меня в роли сервера ноутбук с процессором core i3, который сам 4к не тащит совсем. Но подключать сервер и телевизор к роутеру советую проводом, иначе будет лагать
раскрыть ветку (0)
2 года назад
Ни разу еще не смотрел ничего больше, чем фулашди, вроде как больше и не нужно (лично мне)
2 года назад
Хорошо, много годных букафф!
А теперь, кто мне ответит на вопрос: как нужно кодировать видео, чтобы при разрешении 1080Р (да хотя бы и при 720) не подкинивали моменты горизонтального скроллинга картинки?
Если переформулировать вопрос простыми словами. Я изредка монтирую видосики для себя, сам снимаю (часть с коптера, часть с неподвижной камеры). При наличии сцены горизонтального скролла (например камерой крутим, снимаем панораму) — комп на финальном ролике начинает подфризивать. Вариант «твой комп/интернет отстой» — отпадает, видел видео такого же разрешения, которое не подклинивает в подобных сценах.
Понимаю, что дело в кодеке, либо настройках его. Пытался играться с разными настройками — ставить и переменный битрейт и постоянный (и разных величин постоянный), результат один — Ютубчик в этих моментах подклинивает. И дело даже не в Ютубе, локально на компе это тоже заметно, но не так выраженно.
Поможите люди добрые!
раскрыть ветку (0)
2 года назад
А помните, в конце 90х со спутника шли пробные передачи в mpg2 — 1080p. Там поток был 50 мбсек. И ведь видео карты тянули. с затыками, но тянули. )))
раскрыть ветку (0)
2 года назад
Можно рассмотреть тв бокс на андроиде, да и в новых теликах смарттв поголовно есть.
раскрыть ветку (0)
Похожие посты
18 дней назад
Вытряхнул старину. Кастомный пк в военном стиле 70х
Всем привет. Ещё с детства очень манила советская военная аппаратура, а лет 15 назад наткнулся на форумы по модингу пк, ещё тогда было желание сделать себе комп в не стандартном корпусе, но тода не было ни инструмента ни возможностей. Прошло время и все изменилось, и собственно вот:
За основу взял советский осциллограф с1-5 72 года. Вытряхнул из него все содержимое, отмыл местами покрасил, установил туда atx плату полноразмерную, видеокарту, блок питания без корпуса, кучу куллеров,контроллеры, усилитель с блютуз. Корпус осциллографа практически не изменён снаружи, основное это вместо трубки стоит стрелочный индикатор, который отображает работу hdd. В дополнение к системнику был изготовлен ночник из генераторной лампы, он подключается к передней панели пк. Каждый элемент на панели не бутафорский, выполняет свою функцию( регулировка оборотов охлаждения, громкость, яркость подсветки, басс, тембр, частоты, и.т.д.) В проекте колонки и монитор.
Показать полностью 5
23 дня назад
Рейтинг оборудования пользователей Steam, август 2023 года
Видеокарты с 8 Гб памяти стоят уже у 30% игроков, а восьмиядерные CPU у 20%.
Инфографика: #рейтинг оборудования пользователей Steam, август 2023 года
Показать полностью 1
Поддержать
24 дня назад
Ответ на пост «Может нужны кому 19 дюймовые ЖК мониторы и системники»
народ! давайте на волне создадим Лигу Вторички, что ли, будем компы перебирать для учебных классов, а потом через Пикабу раздавать.
от ддр2, от 4 гигов и какой-то ссд — летать будет, детишкам в помощь!
под это дело донаты не грех открыть, пожалуй.
28 дней назад
Baldur’s Gate 3 — убийца видеокарт? Ремонт Gigabyte RTX 3080 ti
В этот раз к нам на ремонт попала видеокарта RTX 3080 ti Gaming OC.
Это уже седьмая карта от компании Gigabyte за неделю с типовой проблемой по питанию.
И все они вышли из строя при прохождении Baldur’s Gate 3. Такая вот игра – убийца видеокарт. Это конструктивная особенность видеокарт данного вендора, которая в совокупности с плохими заводскими термоинтерфейсами приводит к нехорошим последствиям.
Перед тем, как окончательно выйти из строя, карта во время игры несколько раз отключалась, выкручивая вертушки на 100%, пока не перестала подавать признаки жизни вовсе.
Подкидываем питание и видим нулевое потребление. Это говорит о сработавшем предохранителе, что на данной видеокарте — редкость. А, значит, 25А прошло по этому питанию 🙁
Вскрываем видеокарту и делаем замеры.
Диагноз — предохранитель, действительно, пробит. Также неисправен DrMOS — это заметно и внешне, и в тепловизор.
Увы, DrMOS прикипел к плате намертво и пришлось его выпиливать.
К сожалению, посадочное место тоже сильно пострадало, и посадить на него обратно «красиво» уже не выйдет. Но мы постарались.
Завершающим этапом меняем все термопрокладки, чтобы проблема не повторилась вновь. Собираем карту обратно, гоняем в тестах.
. и возвращаем счастливому владельцу, отпуск которого только начался 🙂
Стоимость ремонта под ключ обошлась заказчику в 10 тысяч рублей.
Для ремонта можно обратиться ко мне в Телеграм — @Bisenen.
А для бесплатной помощи по любому вопросу десктопного железа — в мою группу тг.
Показать полностью 8
1 месяц назад
Компьютерный мастер. Часть 294. Почему нельзя брать игровые компьютеры на OZON и Яндекс-маркете
Почему нельзя брать игровые компьютеры в этих маркетплейсах? да всё очень просто маркетплейс не отвечает за товар, не проверяет своих продавцов, а продавцы в совершенстве освоили маркетинг и методы продажи всякого старья под видом нового. Конечно в этом виноваты и покупатели, ни в чем не хотят разбираться берут самую дешевую цену? а потом плачут, что вокруг мошенники и их обманули)))
Что я сделал, вбил в поиск на OZON «игровой компьютер» сортировку оставил «по популярности» и это значит, вот это всё гумно что мы будем обсуждать ниже популярно и активно покупается.
Эти условно «игровые компьютеры» можно условно разделить на две большие группы:
Первая группа: компьютеры с процессорами 2011-2012 годов выпуска
Среди покупателей существует мнение что процессор CORE-I7, лучше чем CORE-I3, да и вообще количество ядер и их частота решает и на этом мифе паразитируют продавцы с маркетплейсов:
Обычному покупателю кажется ВАУ. CORE-I7 и игровая видеокарта за 40тр
Но вот только покупателю невдомек, что Core-i7-2600 вышел в 2011 году и по производительности сильно уступает современyому core-i3-12100F в 2.5 раза
Кроме того не надо забывать, что процессор i7-2600 будет работать с медленной памятью DDR3 на частотой 1333mhz. И самое главное этот процессор абсолютно точно б.у и материнская плата там будет китайский noname на б.у чипсете intel ибо новых таких уже лет 10 как не производят т.е. по сути этот компьютер не апгрейдо и не ремонтопригоден.
такие-же варианты встречаются и на процессорах 20122013 года:
здесь процессор 2012 года 3-его поколения интел
Как определить год выпуска процессора intel по его маркировке:
первые однадве цифры отвечают за поколение процессора, оно меняется каждый год, вот таблица по которой будет понятно:
Сейчас актуально 13е поколение intel, две первые цифры в название «13»
В принципе условно новыми компьютерами могут модели с процессорами 10-11-12-13 поколения, например i7-10700F вполне может быть новым полностью, условно можно признать игровым и i5-9400F он хоть и 2019 года но до сих пор тянет все видеокарты среднего уровня.
Вторая группа: Компьютеры с не игровыми видеокартами
Например модели с nvidia GT1030 или встроенной графикой:
И самое неприятно здесь, что в такой компьютер вы не сможете добавить нормальную игровую видеокарту ибо блок питания там полное гумно всего 400ватт
Также можно обратить внимание на самую дешевую материнку и медленный SSD диск формата 2.5 дюйма, во что можно играть на VEGA7 я лучше промолчу.
Теперь вопрос если уж очень хочется купить дешевый игровой комп, куда податься??
Я бы рекомендовал магазин DNS и их серию игровых компов ARDOR GAMING, это не реклама, но пример адекватного соотношения цена качество? и отталкиваться от цены ближе к 50тр, например что-то такое:
Не верьте чудесам, новый игровой комп за 30-40тр в современных реалиях невозможен. Те кто в это в это верят получают красивый корпус, неплохую видеокарту, но всё остальное сильно устаревшее железо или наоборот.
Если хотите играть и у вас всего 30-35тр, найдите специалиста который подберет вам немного б.у. комп на авито там всегда хвататет подобных предложений, на 8,9,10-ом поколение INTEL и gtx1660:
Всем хороших и быстрых компов)
Показать полностью 10
Поддержать
1 месяц назад
Сборщик пк
Показать полностью 1
1 месяц назад
Ремонт rtx 3080 ti от Palit
Сегодня на ремонтном столе очередная карта от Palit, rtx 3080 ti gaming pro:
Карта «на пломбе», но мы, к сожалению, сразу видим, что это не показатель. Клиентом заявлена неисправность «да там только гпу поменять» (действительно, всего лишь)))). Особенность подобных ремонтов — отсутствие «гпу» в свободной продаже. А в случае их наличия — большая стоимость ремонта.
Сразу же вскрываем карту и убеждаемся, что чип пробит по питаниям pex и 1.8v. Снимаем чип и проверяем карту на проблемы. Кз по 1.8 остается и выясняется, что у нас так же «бит» чип памяти, поэтому снимаем и его. После этого обнаруживаем и короткое замыкание по 12в, при устранении которого оказывается, что карту уже пытались «паять»:
Ибо дроссель уже сидел на свинцовом припое и с легкостью «выпал» из карты во время пайки. Ставим новый дрмос и проверяем корректность работы:
После этого можно уже и ставить новый гпу на плату:
Есть очень много мифов на тему «замены ГПУ». Что это крайне ненадежно, пайка чипа будет хуже завода и прочие странные рассуждения. Распространенные крайне низкоквалифицированными сервисами / со времен gtx 700 линейки, когда карты велись на «прогрев». Могу лишь сказать, что заводская пайка ГПУ современных карт — крайне ненадежна из-за бОльших тенмператур активности «бессвинцового припоя» (который не вредит окружающей среде). Тогда как в большинстве сервисов чипы «сажаются» на свинцовый припой, который, помимо температур, более «прочный».
После чего собираем и тестируем карту:
Показатели температур под нагрузкой отличные. Можно выдавать карту клиенту.
Для ремонта можно обратиться ко мне в тг — @Bisenen.
А для бесплатной помощи по любому вопросу десктопного железа — в мою группу тг.
Показать полностью 7 1
2 месяца назад
Ретрокомпьютинг. Поиск-2 PC XT на базе 8086 или NEV V30
Этот проект впервые был опубликован на Хабре в 2017м году. Создатель некто Haper – о котором ничего не знаю, но которому бесконечно благодарен за интереснейшее решение возродить один из мощнейших постсоветских домашних компьютеров.
Небольшое видео об этом проекте, я опубликовал в ютубе, а здесь добавлю несколько замечаний, которые в это самое видео просто не попал, поскольку опыт, он набирался постепенно.
Прежде всего проблема с асами реального времени RTC, которые задействованы в проекте. Сначала часы не ходили вообще, потом дико спешили или наоборот. Проблема была в К561ЛН2 – CMOS логике, на которой собран генератор часов. Закупив несколько экземпляров ЛН2 из совершенно разных партий, удалось подобрать пару экземпляров, с которыми часы работают более — менее вменяемо. Иностранный аналог CD4069 так до меня и не доехал, поэтому проверить его в работе не смог. То, что в интернете указан другой аналог для 561ЛН2 — CD4049, это ошибка! Это совершенно разные микросхемки, если смотреть по даташитам.
Вторая проблема заключалась в том, что любые процессоры 8086, включая советские 1810ВМ86 работают без проблем, но любые NEC V30 дают артефакты на экран, причём только текстовом режиме. Понять, что не так с V30 так и не удалось, получилось лишь подобрать один экземпляр, который работает безупречно. Почему такое внимание именно к V30 – он обеспечивает наибольшую скорость работы на 8 мГц, до 2.82 раз быстрее оригинального PC XT.
Наконец, третья не то, что проблема, назовём её «незадача». Не надо выделываться и заменять советские / российские корпуса на аналоги от Texas Instruments, Motorola, Toshiba и т.д. Большинство этих корпусов едут из Китая и довольно часто перемаркированы из случайных элементов или вообще пустышек. Выявить такой неработающий корпус в уже собранной плате довольно непросто. Я нарвался на очень красивые, техас-инструментовские 74LS32 (аналог К555ЛЛ1), которые, судя по всему, просто пустышки (корпус с ножками без кристалла). Кусачками их ещё не расковыривал, не люблю вандалить, но интересно, что может быть не так со всей партией не паянных, идеально симпатичных микросхемок, с блестящими, не окислившимися ножками. Одним словом, для большинства ностальгических проектов, советская, постсоветская логика предпочтительней, поскольку она честней.
В целом пайка заняла для первого экземпляра – неделю, для второго – 2 дня. Не смотря на пугалку где-то на форумах, что брак при производстве RTC таймера К512ВИ1 составлял какую-то чудовищную величину, никаких претензий к попавшим ко мне шести экземплярам этой микросхемы у меня нет. Повторюсь – проблемы были только с подбором 561ЛН2, но не с 512ВИ1.
В целом, машинка работает немного устойчивей проекта Киселева, но и сложность, извините, 139 корпусов против 15 у Сергея.
Пока остаётся нерешенной одна единственная задача – как следует отмыть эту простыню от канифоли!
Показать полностью
2 месяца назад
Одноплатный компьютер с 3G «за косарь». Что Orange Pi предлагает по цене ящика пива?
Каждый год выпускается с десяток новых моделей одноплатных компьютеров. Свежие девайсы представляют как старые и уважаемые фирмы по типу Raspberry Pi, Orange Pi или Banana Pi, так и относительные новички на рынке — Repka Pi, или, например, Lctech Pi. Одноплатники работают на достаточно большом парке железа: кто-то использует чипы AllWinner, кто-то Amlogic, кто-то Beoadcom, а кто-то… мобильные! Пару лет назад Orange Pi отличились выпуском нескольких одноплатников на базе чипсетов очень бюджетных мобильников 2013-2015 годов — 2G IoT и 3G IoT. На данный момент, выпуск 3G IoT завершен, а компания предлагает купить абсолютно новый одноплатник с 3G, Bluetooth, Wi-Fi, GPS, поддержкой Linux и Android всего за 1.000 рублей (500 само устройство и 500 доставка). На что оно способно и стоит ли его брать — узнаем в статье!
Что за устройство?
IoT устройство уже прочно закрепились в нашей жизни. Сейчас уже есть возможность приобрести полноценный внешний GSM-модуль за пару сотен рублей, который способен будет выйти в сеть или обрабатывать SM. Однако, в мире одноплатников всё не так просто: большинство из этих устройств использует планшетные чипсеты, которые обычно не обладают встроенными модемами для работы в GSM-сетях. На помощь приходят внешние модули, но чем выше необходимое поколение связи, тем выше цена. И есть 200 рублей за 2G модуль — это совсем немного, то 3G, а тем более LTE модули могут влететь в копеечку. Конечно в мейнлайн дистрибутивах уже есть драйвера на некоторые модемы Huawei, благодаря чему можно просто воткнуть копеечный USB-свисток но это не совсем спортивно.
С весьма интересным решением пришла компания Orange Pi. Несколько лет назад они представили весьма занимательное устройство: 2G IoT, которое работало на базе давным-давно забытого мобильного чипсета RDA8810, который является родственником Spreadtrum SC6820 — чипа, который использовался в очень многих китайских ультрабюджетниках 2012-2014 годов. Устройство отличалось весьма неплохими характеристиками за низкий прайс:
- Процессор: RDA8810, Cortex-A5, 1Ghz.
- ОЗУ: 256 мегабайт DDR2.
- ПЗУ: 512 мегабайт NAND памяти + возможность загрузки с MicroSD флэшек.
- Дисплей: 40-пиновый коннектор, мимикрирующий под стандартизированный. Однако производитель предлагает свой дисплей от мобильниках втридорого, а распиновка несколько отличается от общепринятой — нужно делать переходник.
- Питание: 5в от USB, до 2А нагрузки при работе с сетью, 3.7в от АКБ с встроенным контроллером питания.
- Звук: Микрофон + встроенный в чипсет ЦАП для вывода звука из системы.
- Интерфейсы: SPI, I2C, GPIO, UART, Wi-Fi, Bluetooth.
Причина низкой цены и хорошего функционала очень проста: Orange Pi просто взяли референсную плату ультрабюджетного смартфона за 1.500-2.000 рублей и развели из нее одноплатник, который затем начали производить. На момент выхода одноплатника, смартфоны на 8810 не производились, так что отпускная цена на чипы была копеечная, в то время как на AllWinner’ы спрос весьма хорош. Год назад они продавались по 700 рублей с учетом доставки, но сейчас их окончательно распродали и найти их можно только на вторичке.
3G IoT — следующая ветвь развития IoT линейки OPi, которая на этот раз работает на базе чипсета MediaTek и имеет полноценную поддержку 3G. По сути, возможности остались те же, однако возможности вывода на HDMI до сих пор нет — теперь производитель предлагает LVDS матрицу, опять же, втридорого. Однако схема есть, чисто теоретически есть возможно купить какой-нибудь бюджетник от ZTE/Huawei, найти схему платы и сделать переходник с шлейфа нашей матрицы на коннектор одноплатника. Драйвер матрицы можно взять в исходниках ядра и без изменений перенести. Работает девайс на базе чипа для бюджетных смартфонов, однако теперь в нашем распоряжении целых два ядра!
Характеристики девайса такие:
- Процессор: 2х-ядерный MT6572, Cortex-A7, 1.2Ghz.
- ОЗУ: 256мб.
- ПЗУ: 512мб eMMC флэшка от Leahkinn + возможность загрузки с MicroSD.
- Дисплей: MIPI DSI, LVDS.
- Питание: 5в, до 2А в пике, 3.7в с контроллером питания.
- Звук: всё так же, микрофон + ЦАП.
- Интерфейсы: SPI, I2C, GPIO, UART, Wi-Fi, Bluetooth.
Весьма недурно, согласны? На момент выхода статьи, этот одноплатник можно заказать на всем известном сайте за 1.000 рублей — это с учетом доставки. Идет недели 3, поставляется в фирменной коробочке. Гребенка уже распаяна с завода.
Ну что-ж, предлагаю посмотреть, что может предложить нам такой одноплатник и стоит ли его вообще брать?
Накатываем систему
На выбор у нас есть Android и Linux. Учтите, что GSM стек работает только в Android! Теоретически есть возможность связаться с модемом из под Linux, но это требует дальнейшего изучения местного factory-режима. Впрочем, GSM под Android не так уж и плохо — нужное вам поведение, вероятно, можно реализовать в виде службы. Но управлять Android придется только, и только через ADB, если у вас нет дисплея.
Для установки ОС можно использовать как внутреннюю память (только Android, rootfs линукса туда не влезет), так и на MicroSD. Оба способа требуют прошивки eMMC с помощью фирменого флэшера — SP Flash Tool. Суть в том, что выбор варианта загрузки с SD/NAND реализован здесь в виде настройки точки монтирования: ядро так или иначе будет находится на eMMC, но в зависимости от выбранного образа boot, будет загружать систему с соответствующего носителя. Примерно как это реализовано здесь.
Мы будем ставить Linux: качаем SP Flash Tool, выбираем scatter-файл и ставим Format All + Download. Осторожно, форматирование сотрет NVRAM и IMEI, так что лучше сделать бэкапы (хотя их все равно можно легко перебить из системы вручную):
На первом проходе, флэшер переразметит внутреннюю память, но ругнется на отсутствующий раздел System. После этого, нужно вернуть режим Download only, снять галку с System и прошить устройство еще раз — после этого, плата будет загружаться с MicroSD:
Теперь нужно записать саму систему на флэшку. Образы записываются как обычно — берем флэшку на 4-8гб, вставляем в кард-ридер и записываем образ через Win32DiskImager. Флэшку желательно брать 10-класса, но у меня и «пятерка» работала с адекватной производительностью:
После записи, вставляем флэшку в устройство и запитываем его. Возможны варианты питания как напрямую от БП, так и от аккумулятора — в таком случае, при подключении БП, контроллер питания будет заряжать аккумулятор, а за статусом зарядки можно следить через устройство battery в /sys/class/power_supply/ (и в Linux, и в Android).
Для общения с системой через консоль, нам понадобится UART-преобразователь. Я для этого использую плату ESP32-WROOM с выпаянным чипом ESP32. Подтыкиваемся (или подпаиваемся) к UART’у, запускаем putty, ставим бодрейт 115200 и вперед наблюдать за консолью!
Настраиваем Linux
Тут ничего особо сложного нет, лишь некоторая подготовка к полноценному использованию системы. Если для вас написанное малопонятно — можете просто скопипастить, все должно работать без проблем.
Итак, система запустилась и требует логин, а кроме этого — сыпет логами в UART. Стандартный логин — root, пароль orangepi, лучше смените пароль сразу. Надоели логи? Пишем:
Можно сразу записать эту команду в rc.local, если не хотите после каждого ребута писать команду по новой.
После этого, нам нужно настроить Wi-Fi. В системе предустановлен wpa_supplicant, поэтому для подключения мы идем в /etc/network/ и редактируем с помощью nano файл interfaces:
nano interfaces
. Дописываем
auto wlan0
iface wlan0 inet dhcp
wpa-ssid «Имя вашей сети»
wpa-psk «Пароль вашей сети»
Жмем Ctrl + X, сохраняем и перезапускаем сервис networking service networking restart Возникли проблемы? wpa_supplicant жалуется на существующий контекст? Удаляем wpa_supplicant из /run/, если все равно не работает — отправляем систему в ребут, должно заработать.
Имейте ввиду: плата без проблем питается от стандартных 5В/0.5А USB-порта ПК, но если подключить к ней USB-устройство во время работы — то плата начнет уходить в ребут при попытке поднять Wi-Fi, даже если вытащить флэшку. Лечится легко: обесточиваем плату, затем включаем снова.
Подключиться можно хоть к точке Wi-Fi от вашего смартфона, дабы объединить их в локальную сеть. Тогда с помощью VNC можно будет вывести изображение с одноплатника на экран разбитого сяоми — чем не применение старому гаджету? Пингуем гугл, сеть есть — отлично!
Теперь ставим icewm из репозиториев, tightvnc и пошло поехало… ан нет! Debian Stretch уже выкинули из официальных репозиториев, перенеся его в архив. Пользовались старыми версиями убунты/дебиана? Тогда следующая операция для вас будет знакома:
nano /etc/apt/sources.list
.
Меняем ftp2.cn.debian.org на archive.debian.org во всех строках. Ctrl + X, сохраняем.
Пишеv apt-get update. Ждём обновления списка пакетов.
Теперь мы можем ставить официальные бинарные пакеты из репозиториев. Нам доступна куча софта, в том числе с более старших Raspberry Pi и Orange Pi — ABI то одно! Можно поставить TightVNCServer, запустить его и без проблем подключиться к нашей машинке (5900 — базовый порт, 5901 — будет для первого дисплея и.т.п).
Но сейчас у нас просто маленький и слабенький десктоп. Надо же использовать возможности одноплатника по полной, верно?
У устройства есть гребенка с 40 пинами, часть из которых мы без проблем можем использовать для наших целей. Друзья, если вы уже имели опыт с другими одноплатниками, то знаете что для Broadcom/AllWiiner и других иных чипсетов уже есть готовые библиотеки для работы с GPIO. Под MediaTek их нет, но ничего сложного в работе с ними из user-space нет. Рассмотрим схему подробнее и два способа работы с ними:
Первый из официального мануала, подразумевает чтение и запись в специальное виртуальное устройство — mt_gpio, а вернее — в его дебаг-режим. В него можно писать хоть из shell-скрипта при желании. Виртуальное устройство расположено по пути/sys/devices/virtual/misc/mtgpio/pin. Если просто начать читать из него, то мы получим список всех пинов и их состояние:
PIN: [MODE] [PULL_SEL] [DIN] [DOUT] [PULL EN] [DIR] [INV] [IES]
0:1000000-1
1:1000000-1
.
Чтобы записать состояние, нам нужно послать специальную строку:
Чтобы выбрать направление пина, нам нужно послать:
echo -wdir > 1/0, где 0 — вход
Чтобы получить состояние пина, нужно прочитать все строки устройство pin и потом распарсить, например, с sscanf (хотя поскольку одно поле — один char, можно взять абсолютное смещение от начала строки). Если читаем — то 3 столбец после двоеточия будет состоянием нашего пина. Я уже все проверил, все точно работает без каких либо проблем, главное не забывайте за режим GPIO 🙂
Пожалуйста, согласовывайте уровни! GPIO у MT6572 имеют лог. уровень 1.6в. Часть периферии чипсета работает на стандартных 3.3в.
Как это работает? См.в исходниках ядра.
Такой способ подойдет для приложений, где не требуется сильно высокая скорость работы. Для шелл-скриптов или даже полноценных нативных приложений таким методом можно управлять пинами без проблем — если вы конечно не реализовываете SPI софтварно 🙂
Есть и второй способ — использовать mt-gpio напрямую через вызов ioctl. Я этот режим пока еще не пробовал, но он гораздо быстрее — для юзерспейса самое то, а работать с ним довольно легко. См. исходники драйвера здесь.
Это второй способ коммуникации с внешним миром, доступный из коробки. На устройстве целых два канала UART, которые могут работать как минимум со скоростью 921600б/с (или 115200 килобайт в секунду). лучше всего использовать эту шину для общения с другими микроконтроллерами или ПК.
Получить доступ к UART можно благодаря соответствующему character-устройству /dev/ttyMTxx. При стандартных настройках (921600б/с), можно без проблем работать с UART из shell-скриптов, как с самым обычным терминалом: echo для записи, cat — для чтения. Из нативных программ, есть такая же возможность открыть ttyMT и читать/писать при стандартных настройках, а если конфигурацию необходимо изменить, то на помощь приходит termios.
А вот тут уже все гораздо интереснее. Как известно, в Linux драйвера шин делятся на два типа: kernel-mode, для работы с драйвером SPI/I2C из других драйверов (например, драйвер камеры хочет получить информацию о модуле через i2c) и user-space i2c-dev/spi-dev. Последние два есть из коробки в большинстве дистрибутивов для «взрослых» одноплатников, но их забыли включить в текущий релиз ядра 3G IoT. Почему? Не ясно — драйвера для i2c и spi у MediaTek точно есть.
На гребенке есть один I2C и один SPI. Исходники ядра для платы можно найти на гитхабе OrangePi. Чуть позже надо будет попробоваать скомпилировать i2cdev и spidev в виде отдельных модулей ядра, которые можно будет загрузить через modprobe.
Я хочу бэйр-метал, а не эти ваши линуксы.
И такая возможность есть, но лишь частично. Orange Pi открыли исходники вторичного загрузчика MediaTek — lk (альтернатива u-boot) или Little Kernel. При некоторой модификации логики lk, можно реализовать свою прошивку используя почти всю мощь чипсета. За этим — сюда.
Для чего он еще может пригодится?
Давайте смотреть сами. У нас есть полноценный десктопный Linux, есть Android, есть 2 неплохих ARMv7 ядра, работающих на частоте 1.2ггц, есть 256 мегабайт ОЗУ. Чем он может еще пригодится:
- Сервер: Нет, речь конечно же не о NAS. Однако поднять простенькую домашнюю страницу, или попытаться реализовать на нем умный дом можно вполне.
- Сбор информации с датчиков: В паре с микроконтроллером, на таком устройстве можно собирать, обрабатывать и хранить довольно большое количество данных с высокой скоростью опроса.
- Ретро-машинка для эмуляторов: При условии, что Вы купили фирменный дисплей, поскольку через VNC поиграть не получится. К сожалению, ни одного вывода на ТВ, данный чипсет не имеет, поэтому либо пытаться прикрутить дисплей от китайчика, либо покупать фирменный.
- Хитрая и дешевая сигнализация с GPS: В целом, для сигнализации такую плату можно рассматривать как System On Module: сразу и линух есть, и GPS из коробки, и 3G. Выйдет дешевле, чем купить отдельно GPS, ESP32 и 3G модуль.
В целом, можно найти еще кучу всяких разных применений данной плате в embedded.
Я считаю, что подобных ультрадешевых плат должно быть гораздо больше на рынке, ведь не все готовы платить несколько тысяч рублей за одноплатники. Однако, такие решения не подойдут для тех людей, которые хотят «купить и чтобы работало, с кучей гайдов» — у таких плат банально околонулевая поддержка. Да, Orange Pi уважаемая компания, они предоставляют полный исходный код не только ядра, но и загрузчиков — чего они делать не обязаны были, но по сути они просто произвели на свет эту плату, а разбираться в ней придется конечному пользователю. Без мануалов, без гайдов.
Стоит ли такую себе брать? Я лично не пожалел 🙂 Плата очень перспективная, а ковыряться в исходниках ядра я люблю. Попробую сделать из неё что-то полезное!
Показать полностью 19
Поддержать
2 месяца назад
Самое популярное оборудование у игроков в Steam
Инфографика: рейтинг оборудования пользователей Steam, июнь 2023 года
Показать полностью 1
Поддержать
3 месяца назад
Intel построит новый завод в Израиле за рекордные 90 млрд шекелей
Показать полностью 2
Поддержать
4 месяца назад
Настало время, когда чипы с ИИ делают чипы
Сейчас практически все крупные чипмейкеры сейчас используют инструменты EDA с поддержкой ИИ.
Поддержать
4 месяца назад
Красная машина
Согласно данным Mercury Research AMD занимает уже более трети рынка процессоров
Показать полностью 1
Поддержать
5 месяцев назад
Красный кэш vs реальность
Привет Пикабу! Год назад AMD запустила пробный процессор 5800X3D с увеличенным объемом кэша третьего уровня, и из-за своей отличной игровой производительности он имел оглушительный успех. Поэтому не удивительно, что в линейке Ryzen 7000 компания развернулась по-полной – есть и 8, и 12, и даже 16-ядерный X3D-камень, там суммарно под 150 МБ кэша: в такой объем можно без проблем положить Windows 95 .
Но в этот раз чуда не случилось – есть вопросы и к производительности, и к надежности, да и немало подводных камней, про которые AMD старалась особо не афишировать. Поэтому давайте разбираться, что это еще за кеш, стоит ли рассматривать в покупке процессоры Ryzen 7000X3D, что нужно знать и почему вы должны забыть про их покупку на Ali или Avito.
Минутка (нет) теории
И для начала – что такое кэш? Это небольшой объем очень быстрой памяти, которая находится максимально близко к вычислительным блокам процессора и нужна для ускорения работы.
Все дело в том, что с точки зрения процессора ОЗУ находится далеко, и это стало проблемой для десктопных камней уже в 90-ые, когда они перешагнули за сотню мегагерц. Это привело к тому, что время такта снизилось до единиц наносекунд, тогда как обращение к памяти занимает на порядок, а то и два больше.
Решение в Intel придумали быстро: снабдили процессор небольшим объемом собственной памяти, доступ к которой занимает один, в худшем случае несколько тактов. Хранение в таком кэше инструкций и важных данных позволяет ощутимо снизить время ожидания информации вычислительными блоками, что и вылилось в прирост производительности.
Но почему тогда до последнего времени никто не задумывался о кэше? Да, многие знают, что в современных CPU он имеет три уровня , различающихся по скорости доступа и объему, и суммарно достигает несколько десятков мегабайт – и на этом все.
Ответ тут прост: последний раз проблема с кэшем остро стояла лишь в начале нулевых, когда простым Celeron кэша второго уровня ощутимо не докладывали – всего 128 КБ против 256 или даже 512 КБ у Pentium 4 на LGA478. Тогда это приводило к тому, что на одинаковых частотах сельдерей мог на 20-30% проигрывать пеньку.
Дело в том, что в то время кэш был дорогим и проблемным, как и любая другая новая технология, и при этом, как и сейчас, занимал большую часть площади чипа – поэтому для удешевления производства процессоров чаще всего резали именно его. Уже к середине нулевых с выходом LGA775 проблемы были решены, и даже базовым Core 2 Duo щедро насыпали аж 4 МБ кэша, тогда как поздние Core 2 Quad могут похвастаться уже 12 МБ быстрой памяти L2.
И с тех пор прогресс в кэше сильно замедлился. Да, появился еще более низкий уровень L3, доступ к которому могла иметь даже интегрированная графика, но в целом формула в 2-3 МБ кэша на ядро с тех пор не менялась, потому что процессорам буквально не нужно было больше для данных для быстрого доступа.
Именно поэтому вышедшее в 2014 году 5-ое поколение процессоров Intel, оно же Broadwell, с треском провалилось: попытка добавить 64-128 МБ памяти eDRAM, или кэша уже четверого уровня на отдельной микросхеме, давало реальный прирост лишь в единичных задачах, где нужно работать с большим объемом предсказуемых данных – например, при архивировании.
В играх, при работе с мультимедией и графикой новинки нередко оказывались даже хуже предшественников из-за более низких тактовых частот.
Хотя, конечно, полностью тупиковым eDRAM не стал: как раз в 5-ом поколении Intel ощутимо бустанула свою интегрированную графику Iris, которая также имела доступ к этой памяти. Как итог, это породило несколько линеек ультрабуков, которые были способны тянуть на интегряшках свежие на тот момент игрушки, включая третьего ведьмака на минималках. Но, разумеется, в случае с десктопами это было мало кому интересно, поэтому с выходом Skylake Intel предпочла забыть об L4.
5800X3D – когда кэш помог
И вот, спустя почти 10 лет после выхода пятитысячных интелов, AMD резко анонсирует 8-ядерный Ryzen 5800X3D с дополнительной микросхемой кэша L3 на 64 МБ.
Производить его было нелегко – дополнительный кэш идет вторым этажом над кристаллом с ядрами, и чтобы бутерброд влез по толщине под крышку, пришлось срезать 95% пустого кремния, доводя толщину ядерного чипа всего до 0.02 мм.
Бонусом идет использование самого свежего степпинга B2, что позволило снизить рабочие напряжения, а также пониженные на пару сотен мегагерц частоты относительно обычного 5800X. Ну и вишенка на торте – такой процессор не получится разогнать традиционными методами через BIOS. AMD объясняет это нежностью кристалла с 3D V-cache, который просто не переживет повышение напряжения.
Но самым интересным был вопрос о том, какой прирост производительности даст утроенный объем кэша L3? Ведь за последние десятилетие мы уже привыкли к тому, что информацию о кэше нам подают вскользь, и никто уже давно не изучает его влияние на производительность – да и такой возможности не было, что AMD, что Intel урезают кэш обычно вместе с ядрами, и последние очевидно влияют сильнее.
С другой стороны, у Ryzen из-за чиплетной структуры всегда были проблемы с задержками доступа к ОЗУ, поэтому именно такие камни должны лучше всего отзываться на увеличение объема кэша. Более того, решения AMD с одним «ядерным» кристаллом оказываются по скорость записи данных в память аж вдвое медленнее, чем старшие 12- и 16-ядерные Ryzen с двумя кристаллами – эту проблему также призван решить увеличенный кэш.
Собственно, так и оказалось – конечно, с лозунгом, что Ryzen 5800X3D — лучший игровой процессор, AMD погорячилась, все-таки лучший камень от Intel на тот момент, i9-12900KS, был слегка быстрее в играх, хотя и ощутимо дороже и горячее.
Но прирост относительно обычного 5800X даже с учетом чуть большей частоты последнего был серьезным – в среднем около 20%. Даже 16-ядерный 5950X в играх был хуже – хотя здесь уже ничего удивительного, единичные проекты могут загрузить работой три десятка потоков.
Но вот в рабочих задачах ситуация оказалась куда скромнее: в большинстве программ 5800X оказывался даже быстрее, лишь с жадным до памяти архивированием 5800x3D слегка вырвался вперед. И это понятно: вычислительные задачи предсказуемы, что позволяет обойтись меньшим объемом кэша для подпихивания процессору данных в быстром доступе.
Особенно если учесть, что 32 МБ у 8-ядерного 5800X – это больше, чем у 16-ядерного i9-12900K, который довольствуется только 30 МБ.
А вот в случае с играми предсказуемость меньше, да и нередко нагрузка на память высокая, поэтому большой объем кэша действительно нивелирует большие задержки доступа к ОЗУ.
В итоге на AM4 всех все устраивало: хочется максимальную производительность в играх от 5-летного сокета на уровне 12-ого поколения процессоров Intel? 5800x3D – отличный выбор даже для не самых топовых плат с такой себе реализацией VRM, так как процессор сам по себе достаточно энергоэффективный из-за отборного чипа и сниженных частот. Хочется максимальную производительность в рабочих задачах? Есть 16-ядерный 5950X, который навязывает конкуренцию i9-12900К.
Нужно отдать должное – AMD закрыли эпоху AM4 с лучшей стороны.
Так что теперь остается ответить лишь на два вопроса – почему Intel не вернулась к технологии eDRAM и какими вышли Ryzen с 3D V-cache на AM5?
В случае с Intel ответ простой – в увеличенном кэше нет нужды. Компания продолжает использовать один монолитный кристалл со всеми ядрами и контроллерами внутри, в отличие от разнокристалльных Ryzen. Как итог, у синих задержки доступа к ОЗУ и между ядрами ощутимо ниже, чем у красных, поэтому процессоры Intel комфортно себя чувствуют с относительно небольшим объемом кэша – который, в любом случае, компания время от времени слегка увеличивает.
При этом в следующем 14-ом поколении процессоров Intel, по слухам, перейдет на чиплетную структуру и вернется к идее кэша L4, который будет отдан интегрированной графике. С учетом того, что последняя будет на архитектуре Arc – Intel вполне может побороться за звание производителя лучшей интегрированной графики с AMD, которая до сих пор лидер в этой области.
Ryzen 7000x3d – фокус не (совсем) удался
Что касается AMD, то компания продолжила использовать чиплетную архитектуру, как итог – Ryzen 7000 имеют 1 или 2 кристалла с ядрами и один с контроллерами ввода-вывода, а также с простенькой интегрированной графикой. То есть контроллер ОЗУ снова отделен от ядер, но AMD сделала все возможное для снижение задержек: у всех Ryzen 7000 частота внутренней шины Infinity Fabric доведена до 2000 МГц, что ранее было доступно только для лучших Ryzen 5000, и то с разгоном. Кроме того, в случае с DDR5 большое влияние имеют именно большие внутренние задержки – поэтому даж е в случае с однокристалльными процессорами Intel переход с DDR4 увеличивает время доступа к памяти до полутора раз.
Как итог, в случае с Ryzen 7000 задержки ОЗУ оказываются сравнимыми с Intel Core 12 и 13 поколений при работе с DDR5 на одинаковой частоте, да и по пропускной способности большой разницы между ними нет.
Но при этом на Intel 13-ого поколения возможности по разгону лучше – можно замахнуться и на 7000 МГц, пробив сотню гигабайт/с пропускной способности. Получается, что увеличенный кэш Ryzen снова нужен?
И да и нет. Начнем с топовых Ryzen 7900X3D и 7950X3D. У них изначально два процессорных кристалла по 32 МБ памяти L3 на борту, и к первому из них теперь добавляется еще один чип 3D V-cache на 64 МБ, доводя суммарный объем кэша третьего уровня до 128 МБ. И это приводит к новой интересной проблеме: получается, что один процессорный кристалл теперь тонкий и с 96 МБ памяти, а второй – обычный с 32. И, разумеется, лазить за данными в кэш первого кристалла из второго – долго. При этом работа кэша для программистов полностью прозрачна, рулением занимается сам процессор.
Еще одна проблема осталась со времен Ryzen 5800X3D: двухэтажность и нежность дополнительного кэша привели к ограничению напряжения, частоты и теплопакета, причем последний снизился достаточно ощутимо, со 170 до 120 Вт.
Как это отразилось в рабочих задачах, которым в большинстве своем огромный L3 не нужен – очевидно: обычные версии Ryzen без X3D оказываются и слегка быстрее, и ощутимо дешевле.
Более того, проблему с низкой пропускной способностью DDR5 дополнительный кэш не исправил просто потому, что для вычислительных задач это не проблема: тот же рендер не замечает даже перехода с одноканала в двухканал, чего уж тут говорить о разницы в скорости с четырехканалом.
А что по играм? Тому же 5800X дополнительный L3 ощутимо помог. Поэтому и не удивительно, что у старших Ryzen 7000 ситуация аналогичная: что Windows, что игроделы уже научились работать с чиплетными камнями AMD и стараться нагружать именно первый 8-ядерный кристалл, который как раз и имеет шапку в виде 3D V-cache. Так что и 7950X3D, и 7900X3D на 10-15% быстрее обычных версий, тут никаких сюрпризов, и даже 13900K слегка позади.
Но тут возникает интересный нюанс. Как мы уже объяснили в одном из предыдущих роликов, 8 ядер для игр хватит еще очень надолго, то есть брать 16-ядерный 7950X3D чисто на поиграть – не самая здравая идея. А в рабочих задачах обычная версия этого CPU лучше. Вот и получается, что старшие X3D интересны разве что тем, кто и активно занимается вычислительной работой, и хочет одновременно поиграть с картой уровня RTX 4090. Разумеется, таких пользователей не очень много, так что для большинства такие процессоры не представляют интересна.
Так что спустимся до более народного 8-ядерного Ryzen 7800X3D. В рабочих задачах тут ситуация ровно как у старших собратьев – обычный 7700X чутка быстрее из-за более высоких частот. Но, с другой стороны, никто и не берет такие процессоры для расчета погоды на Марсе, а вот для игр 8 ядер – оптимум. И тут новинка красных показывает себя просто отлично – лишние 64 МБ кэша делают ее на 10-15% быстрее, и как итог, 7800X3D напрямую соревнуется с топовым и гораздо более дорогим i9-13900K.
Казалось бы, вот он, лучший игровой процессор современности – но тут опять вылазит нюанс. 5800X3D был хорош в том числе и потому, что это вишенка на торте AM4 – ничего лучше для игр на этом сокете нет и уже не будет, и если хочется еще больше FPS, то нужно тратить много денег для перехода на AM5 или LGA1700. А вот в случае с AM5 линейка Ryzen 7000 – первая, но далеко не последняя. И с учетом того, что даже обычный Ryzen 7 7700X без проблем вытягивает RTX 4090 в реалистичных для нее разрешениях 2К и выше – нет никакого смысла в покупке 7800X3D, ибо через год выйдут Ryzen 8000, которые по слухам будут на 20-25% быстрее и которые точно обгонят X3D версии, при этом стоить новинки скорее всего будут даже дешевле.
Так что 7800X3D, безусловно, хорош – но здесь и сейчас, и только для тех, кто хочет играть с топовой видеокартой в FHD на 360-гц экране, выжимая из железа максимум плавности. Для реалистичных геймеров нет никакого смысла доплачивать за 64 МБ кэша лишние полторы сотни долларов или аж 20 тысяч рублей на Ali – они дадут минимальную разницу далеко за 200 FPS, так что почувствовать, что деньги потрачены не зря, не получится.
Может быть, польза от 3D V-cache есть в других применениях? Первое что вспоминается – это интегрированная графика, которая как раз появилась во «взрослых» Ryzen 7000. К тому же были слухи, что лишние 64 МБ кэша увеличивают ее производительность аж в 3-4 раза. Увы, как оказалось, реальный буст – меньше 10%, да и сама по себе эта графика не способна ни на что больше, чем тянуть доту на минималках.
Но что самое печальное – Ryzen 7000X3D оказались слишком нежными. И хотя разгон любых x3D процессоров через BIOS заблокирован, многие утилиты позволяли увеличивать напряжение на процессоре из системы. С печальным результатом – малейший выход за пределы 1.35 В приводит к гарантированной смерти – это касается и Ryzen 5800X3D. Более того, даже если не баловаться с разгоном, у многих старшие двухкристалльные Ryzen 7900X3D и 7950X3D умирают сами по себе: у кого на следующий день после покупки, у кого через месяц. Возможно, дело в разнородном нагреве двух процессорных кристаллов, ведь только один из них имеет второй ярус с кэшем. Но, в любом случае, проблема есть и достаточно массовая – и самое худшее в том, что официально в России эти процессоры не купить, они есть лишь на различных маркетплейсах. Поэтому если спустя пару недель после покупки свежий Ryzen отправится в кремниевую вальгаллу – вернуть деньги уже не получится, а стоят такие чипы немало. Касается ли эта проблема однокристалльного Ryzen 7800X3D – пока неизвестно, но лучше не рисковать и дождаться их появления в крупных сетевых магазинах.
Итоги
Обычно бывает, что первый блин оказывается комом, однако с технологией 3D V-cache оказалось все ровно наоборот: Ryzen 7 5800X3D получился на редкость хорошим процессором, который продлевает жизнь сокету AM4 в играх на долгие годы вперед. У AMD были все шансы повторить его успех с AM5 – но не удалось. Старшие процессоры, которые обычно берут под вычисления, буста от лишнего кэша L3 не получают вообще – даже проигрывают обычным версиям. Младший 8-ядерный 7800X3D, с одной стороны, оказался лучшим игровым камнем современности – только вот на деле почувствовать это не получится, чего не скажешь про ощутимую переплату за него. А с учетом того, что на горизонте уже видны продвинутые Ryzen 8000, да и новости о внезапных смертях 7000X3D оптимизма не прибавляют – нет никакого смысла в покупке таких процессоров. И если вспомнить, что обычные Ryzen 7000 уже активно дешевеют за рубежом, и рано или поздно это докатится и до России – они все еще остаются наилучшим выбором по цене-производительности на сокете AM5.
Встроенные графические процессоры — Всё о подключении и отключении
Встроенный графический процессор как для геймеров, так и для нетребовательных пользователей играет важную роль.
От него зависит качество игр, фильмов, просмотра видео в интернете и изображений.
Содержание:
Принцип работы
Графический процессор встроен в материнскую плату
Графический процессор интегрируется в материнскую плату компьютера — так выглядит встроенный графический процессор.
Как правило, используют его, чтобы убрать необходимость установки графического адаптера — видеокарты.
Такая технология помогает снизить себестоимость готового продукта. Кроме того, благодаря компактности и нетребовательного энергопотребления таких процессоров их часто устанавливают в ноутбуки и маломощные настольные компьютеры.
Таким образом, встроенные графические процессоры заполонили эту нишу настолько, что 90% ноутбуков на полках магазинов США имеют именно такой процессор.
Вместо обычной видеокарты во встроенных графиках часто вспомогательным средством служит сама оперативная память компьютера.
Правда, такое решение несколько ограничивает производительность девайса. Всё же сам компьютер и графический процессор используют одну шину для памяти.
Так что подобное “соседство” сказывается на выполнении задач, особенно при работе со сложной графикой и во время игрового процесса.
Виды
Виды графических процессоров
Встроенная графика имеет три группы:
- Графика с разделяемой памятью — устройство, в основе которого совместное с главным процессором управление оперативной памятью. Это значительно уменьшает стоимость, улучшает систему энергосбережения, однако ухудшает производительность. Соответственно, для тех, кто работает со сложными программами, встроенные графические процессоры такого вида с большей вероятностью не подойдут.
- Дискретная графика — видеочип и один-два модуля видеопамяти распаяны на системной плате. Благодаря этой технологии существенно улучшается качество изображения, а также становится возможным работать с трехмерной графикой с наилучшими результатами. Правда, заплатить за это придется немало, а если вы и подыскиваете высокомощный процессор по всем параметрам, то стоимость может быть неимоверно высокой. К тому же, счет за электричество несколько вырастет — энергопотребление дискретных графических процессоров выше обычного.
- Гибридная дискретная графика — сочетание двух предыдущих видов, что обеспечило создание шины PCI Express. Таким образом, доступ к памяти осуществляется и через распаянную видеопамять, и через оперативную. С помощью этого решения производители хотели создать компромиссное решение, но оно все же не нивелирует недостатки.
Производители
Занимаются изготовлением и разработкой встроенных графических процессоров, как правило, крупные компании — Intel, AMD и Nvidia, но подключаются к этой сфере и многие небольшие предприятия.
Видеокарты от AMD пользователи считают более мощными, чем те же Intel. Однако чем же не угодили Intel? Если верить статистике, то они лидеры продаж микросхем.
Intel Graphics
Графические процессоры от Intel
Данная компания начала использовать встроенные видеокарты с выхода Westmere.
После него HD Graphics ставили лишь в Pentium и Celeron. С поколения Haswell разработали новую классификацию чипов: 4 — Haswell, 5 — Broadwell. Но с поколения Skylake маркировка вновь изменилась.
Маркировка делится на четыре вида:
- P — выключенное видеоядро;
- C — специально разработанная для LGA;
- R — для BGA;
- H — рассчитано на мобильные устройства (Iris Pro).
Intel HD Graphics 530
Одна из последних разработок Intel в сфере интегрированный видеокарт — Intel HD Graphics 530.
Его производители позиционируют как оптимальное решение даже для самых мощных игр, правда, реальность не настолько оптимистична.
Основана новая видеокарта на графическом ядре Skylake. Оно же, в свою очередь, строится на основе одного или нескольких модулей, каждый из которых состоит из трех секций.
Они соединяют по 8 устройств-исполнителей, обрабатывающих графические данные, и, вдобавок ко всему, содержат специальные модули, работающие с памятью, и текстурные семплеры.
К тому же, графическое ядро имеет внемодульную часть, что улучшает и добавляет некоторые функции.
Сейчас же фирма Intel работает непосредственно с увеличением мощности своей продукции, а также добавлением новых функций.
К примеру, в GPU запустили новую технологию Lossless Render Target Compression, которая позволяет осуществлять рендринг видео без существенных потерь в качестве.
К тому же, компания трудилась над увеличением быстродействия интегрированных процессоров в играх на 3-11%.
Разработчики поработали и над качеством воспроизведения видео — его интегрированная видеокарта поддерживает и в 4К разрешении.
Что касается игр, то большая часть будет работать нормально, но для заядлых геймеров все же стоит обратить внимание на AMD 10.
Их графическая производительность значительно превышает показатели HD Graphics 530. Так что видеоядро HD Graphics 530 подойдет по большей мере для нетребовательных сетевых игр и, конечно, же потянет обычные мини-игры.
AMD
Графические процессоры от AMD
Процессоры AMD со встроенным графическим ядром являются едва ли не прямыми конкурентами Intel.
Соперничество, конечно, заключается в предоставлении наилучшего соотношения цена/качество. Как ни странно, AMD таки отстает от своего соперника, у которого доля продаж выше.
Однако работают процессоры AMD порой значительно лучше.
Правда, ситуация совсем другая, когда речь идет о дискретных процессорах. Около 51% как раз доля AMD. Так что если вас интересует именно дискретная графика, стоит обратить внимание именно на эту компанию.
Одна из последних разработок AMD, которая составляет неплохую конкуренцию Intel HD Graphics 530, — AMD A10-7850K.
AMD A10-7850K
Относится данный тип интегрированной графики к гибридному виду. Ядро Kaveri вмещает 8 асинхронных вычислительных движков. Причем доступ к системной памяти у них с x86-ядрами равноценный.
В частности, при помощи HSA вычислительные кластеры выполняют собственные процессы независимо от других ядер.
Таким образом, A10-7850К имеет в распоряжении 4 вычислительные ядра и 8 графических кластеров.
AMD по этому поводу называет данную разработку 12-ядерным процессором. Правда, не все так гладко: 12 ядер не равнозначные, им нужны специализированные программные коды.
Сама же ОС не заметит никаких дополнительных восьми ядер, а увидит все те же 4 x86-ядра.
В общем, x86-составляющая несколько портит все впечатление.
К примеру, тактовая частота изрядно пострадала. Причем настолько, что даже предыдущая модель посильнее будет. Может, в будущем производитель будет дорабатывать данный параметр. Всё же показатель хотя бы в 4 ГГц улучшил работоспособность и быстродействие.
На данный момент средняя частота работы этой встроенной графики во время серьезной нагрузки составляет 3,8 ГГц. В обычном положении достигает 1,7 ГГц.
Таким образом, данная модель дискретной графики в меру мощная, но и несколько дешевле аналога от Intel. Игры такое устройство потянет, работу с трехмерным изображением тоже.
Включить
Выходы интегрированной видеокарты
Включить интегрированную графику не составляет особого труда. Чаще всего сам монитор выводит изображение с подключенной к нему видеокарты.
Правда, и такой автоматический режим не всегда срабатывает. Тогда и нужно самостоятельно заняться решение проблемы — поменять настройки в БИОС.
Сделать это несложно. Найдите надпись Primary Display или Init Display First. Если не видите что-то такое, поищите Onboard, PCI, AGP или PCI-E (всё зависит от установленных шин на материнку).
Выбрав PCI-E, к примеру, вы включаете видеокарту PCI-Express, а встроенную интегрированную отключаете.
Таким образом, чтобы включить интегрированную видеокарту нужно найти соответствующие параметры в биосе. Часто процесс включения автоматический.
Читайте также:
Отключить
Как включить встроенный процессор
Отключение лучше проводить в БИОСе. Это самый простой и незатейливый вариант, подходящий для практически всех ПК. Исключением являются разве что некоторые ноутбуки.
Снова же найдите в БИОС Peripherals или Integrated Peripherals, если вы работаете на десктопе.
Для ноутбуков название функции другое, причем и не везде одинаковое. Так что просто найдите что-то относящиеся к графике. К примеру, нужные опции могут быть размещены в разделах Advanced и Config.
Отключение тоже проводится по-разному. Иногда хватает просто щелкнуть “Disabled” и выставить PCI-E видеокарту первой в списке.
Если вы пользователь ноутбука, не пугайтесь, если не можете найти подходящий вариант, у вас априори может не быть такой функции. Для всех остальных устройств же правила простые — как бы не выглядел сам БИОС, начинка та же.
Если вы имеете две видеокарты и они обе показаны в диспетчере устройств, то дело совсем простое: кликнете на одну из них правой стороной мышки и выберите “отключить”. Правда, учитывайте, что дисплей может потухнуть. У ноутбуков, скорее всего, так и будет.
Однако и это решаемая проблема. Достаточно перезагрузить компьютер или же подключить второй монитор по HDMI или VGA.
Все последующие настройки проведите на нем. Если не работает данный способ, сделайте откат своих действий с помощью безопасного режима. Также можете прибегнуть и к предыдущему способу — через БИОС.
Две программы — NVIDIA Control Center и Catalyst Control Center — настраивают использование определенного видеоадаптера.
Они наиболее неприхотливы по сравнению с двумя другими способами — экран вряд ли выключится, через БИОС вы тоже случайно не собьете настройки.
Для NVIDIA все настройки находятся в разделе 3D.
Выбрать предпочитаемый видеоадаптер можно и для всей операционной системы, и для определенных программ и игр.
В ПО Catalyst идентичная функция расположена в опции «Питание» в подпункте “Switchable Graphics”.
Таким образом, переключиться между графическими процессорами не составляет особого труда.
Есть разные методы, в частности, и через программы, и через БИОС, Включение или выключение той или иной интегрированной графики может сопутствоваться некоторыми сбоями, связанных преимущественно с изображением.
Может погаснуть экран или просто появиться искажения. На сами файлы в компьютере ничего не должно повлиять, разве что вы что-то наклацали в БИОСе.
Заключение
Нужна ли встроенная графика?
В итоге, встроенные графические процессоры пользуются спросом за счет своей дешевизны и компактности.
За это же придется платить уровнем производительности самого компьютера.
В некоторых случая интегрированная графика просто необходима — дискретные процессоры идеальны для работы с трехмерными изображениями.
К тому же, лидеры отрасли — Intel, AMD и Nvidia. Каждый из них предлагает свои графические ускорители, процессоры и другие составляющие.
Последние популярные модели — Intel HD Graphics 530 и AMD A10-7850K. Они довольно функциональны, но имеют некоторые огрехи. В частности, это относится к мощности, производительности и стоимости готового продукта.
Включить или отключить графический процессор со встроенным ядром можно или же самостоятельно через БИОС, утилиты и разного рода программы, но и сам компьютер вполне может сделать это за вас. Всё зависит от того, какая видеокарта подключена к самому монитору.
Источник https://pikabu.ru/story/pro_apparatnoe_dekodirovanie_ili_zachem_nuzhna_integrirovannaya_grafika_8160542
Источник https://geek-nose.com/vstroenny-graficheskiy-processor/