Как проверить двигатель жесткого диска

Как проверить двигатель жесткого диска

Сломался у меня винчестер от ноута. Хотел его сегодня выкинуть, покрутил в руках и в голове промелькнула идея оживить моторчик привода диска. Вспомнил теорию по двигателям, которую получил ещё в студенческие годы, прикинул, что там стоит обычный фазный синхронный двигатель. Гуглить и искать в интернете специально ничего не стал — решил запустить его сам.

Раскрутив винт по винтикам обнаружил четыре контакта, идущие к мотору. Прозвонив эти контакты я обнаружил, что мотор содержит три обмотки, подключенные по схеме «звезда» с выводом от общей точки. То есть получается три фазы и общий выход. Фазы смещены на 60 градусов. Сопротивление обмоток низкое, в районе пары Ом.

Чтоб запустить моторчик нужно по очереди подавать импульсы на эти три обмотки. Быстро накидав текст программы для микроконтроллера и спаяв на коленках схему получил результат формы сигнала:

С микроконтроллера сигнал поступает на мосфеты Т1 — Т3, далее с мосфетов импульсы подаются на обмотки А B и C. Общий вывод N подключен к плюсу через токоограничивающий резистор. Чтобы мотор хорошо работал, нужно подбирать оптимальное соотношение скважности импульсов.

Запуск старых HDD для прикладных применений

При использовании старых HDD приводов в прикладных целях иногда возникает проблема с тем, что шпиндельный двигатель останавливается через некоторое время после запуска. Есть у них такая «фишка» — если с блока головок не поступают сигналы на микросхему-контроллер, то она запрещает микросхеме-драйверу вращать двигатель. На примере несколько моделей приводов попробуем разобраться, как это исправить.

Всё началось с того, что привезли несколько старых винчестеров (рис.1) и сказали, что здесь рабочие вперемешку с «убитыми», хочешь – выбирай, не хочешь – делай что хочешь. Но если разберёшься, как их использовать в качестве небольшого наждака для правки инструмента, расскажи. Ну, вот – рассказываю…

Первый HDD – «Quantum» семейства «Fireball TM» с микросхемой привода TDA5147AK (рис.2). Посмотрим, что он из себя представляет.

Верхняя крышка крепится 4-мя винтами по углам и одним винтом и гайкой, находящимися сверху, под наклейками. После снятия крышки видны сам жёсткий диск, считывающие головки и магнитная система управления положением головок (рис.3). Шлейф отсоединяем, магнитную систему откручиваем (здесь понадобиться специально заточенный шестигранный ключ «звёздочка»). При желании диск тоже можно снять, если открутить три винта на шпинделе двигателя (также нужен шестигранник).

Теперь ставим крышку на место для того, чтобы можно было перевернуть HDD для экспериментов с электроникой и подаём в разъём питания напряжения +5 В и +12В. Двигатель разгоняется, работает примерно 30 секунд, а затем останавливается (на печатной плате есть зелёный светодиод – он горит при вращении двигателя и мигает при его остановке).

В сети легко находится даташит на микросхему TDA5147K, но по нему не удалось разобраться с сигналом разрешения/запрета вращения. При «подтягивании» сигналов POR к шинам питания добиться нужной реакции не удалось, но при просмотре сигналов осциллографом выяснилось, что при касании щупом 7-го вывода микросхемы TDA5147АK происходит её сброс и перезапуск двигателя. Таким образом, собрав простейший генератор коротких импульсов (рис.4, нижнее фото) с периодом в несколько секунд (или десятков секунд), можно заставить двигатель вращаться более-менее постоянно. Возникающие паузы в подаче питания длятся около 0,5 секунды и это не критично, если двигатель используется с небольшой нагрузкой на валу, но в других случаях это может быть неприемлемо. Поэтому, способ хоть и действенный, но не совсем правильный. А «правильно» запустить его так и не удалось.

Следующий HDD – «Quantum» семейства «Trailblazer» (рис.5).

При подаче напряжений питания привод никаких признаков жизни не подаёт и на плате электроники начинает сильно греться микросхема 14-107540-03. В середине корпуса микросхемы заметна выпуклость (рис.6), что говорит о её явной неработоспособности. Обидно, но не страшно.

Смотрим микросхему управления вращением двигателя (рис.7) — HA13555. Она при подаче питания не греется и видимых повреждений на ней нет. Прозвонка тестером элементов «обвязки» ничего особенного не выявила – остаётся только разобраться со схемой «включения».

Поисковики даташит на неё не находят, но есть описание на HA13561F. Она выполнена в таком же корпусе, совпадает по ножкам питания и по «выходным» выводам с HA13555 (у последней к проводникам питания двигателя подпаяны диоды – защита от противо-ЭДС). Попробуем определиться с необходимыми выводами управления. Из даташита на HA13561F (рис.8) следует, что на вывод 42 (CLOCK) должна подаваться тактовая частота 5 МГц с уровнем TTL-логики и что сигналом, разрешающим запуск двигателя, является высокий уровень на выводе 44 (SPNENAB).

Так как микросхема 14-107540-03 нерабочая, то отрезаем питание +5 В от неё и от всех остальных микросхем, кроме HA13555 (рис.9). Тестером проверяем правильность «порезов» по отсутствию соединений.

На нижнем фото рисунка 9 красными точками показаны места подпайки напряжения +5 В для HA13555 и резистора «подтяжки к плюсу» её 44 вывода. Если же резистор от вывода 45 снять с родного места (это R105 по рисунку 8) и поставить его вертикально с некоторым наклоном к микросхеме, то дополнительный резистор для подтяжки к «плюсу» вывода 44 можно припаять к переходному отверстию и к висящему выводу первого резистора (рис.10) и тогда питание +5 В можно подавать в место их соединения.

На обратной стороне платы следует перерезать дорожки, как показано на рисунке 11. Это «бывшие» сигналы, приходящие от сгоревшей микросхемы 14-107540-03 и старая «подтяжка» резистора R105.

Организовать подачу «новых» тактовых сигналов на вывод 42 (CLOCK) можно с помощью дополнительного внешнего генератора, собранного на любой подходящей микросхеме. В данном случае была использована К555ЛН1 и получившаяся схема показана на рисунке 12.

После «прокидывания» проводом МГТФ напряжения питания +5 В прямо от разъёма к выводу 36 (Vss) и других требуемых соединений (рис.13), привод запускается и работает безостановочно. Естественно, если бы микросхема 14-107540-03 была исправна, вся доработка заключалась бы только в «перетяжке» 44-го вывода к шине +5 В.

На этом «винте» была проверена его работоспособность при других тактовых частотах. Сигнал подавался с внешнего генератора прямоугольных импульсов и минимальная частота, с которой привод работал устойчиво — 2,4 МГц. На более низких частотах циклично происходил разгон и остановка. Максимальная частота – около 7,6 МГц, при дальнейшем её увеличении количество оборотов оставалось прежним.

Количество оборотов также зависит и от уровня напряжения на выводе 41 (CNTSEL). В даташите на микросхему HA13561F есть таблица и она соответствует значениям, получаемым у HA13555. В результате всех манипуляций удалось получить минимальную скорость вращения двигателя около 1800 об/мин, максимальную – 6864 об/мин. Контроль проводился с помощью программы SpectraPLUS, оптопары с усилителем и кусочка изоленты, приклеенного к диску так, чтобы он при вращении диска перекрывал окно оптопары (в окне анализатора спектра определялась частота следования импульсов и затем умножалась на 60).

Третий привод – «SAMSUNG WN310820A».

При подаче питания микросхема-драйвер – HA13561 начинает сильно греться, двигатель не вращается. На корпусе микросхемы заметна выпуклость (рис.14), как и в предыдущем случае. Проводить какие-либо эксперименты не получится, но можно попробовать запитать двигатель от платы с микросхемой HA13555. Длинные тонкие проводники были подпаяны к шлейфу двигателя и к выходным контактам разъёма платы электроники – всё запустилось и работало без проблем. Если бы HA13561 была целой, доработка для запуска была бы такой же, как и для «Quantum Trailblazer» (44-й вывод к шине +5 В).

Читать статью  Проверка диска на ошибки и битые сектора (пример работы с программой Victoria в DOS и Windows)

Четвёртый привод — «Quantum» семейства «Fireball SE» с микросхемой привода AN8426FBP (рис.15).

Если отключить шлейф блока головок и подать питание на HDD, то двигатель набирает обороты и, естественно, через некоторое время останавливается. Даташит на микросхему AN8426FBP есть в сети и по нему можно разобраться, что за запуск отвечает вывод 44 (SIPWM) (рис.16). И если теперь перерезать дорожку, идущую от микросхемы 14-108417-02 и «подтянуть» вывод 44 через резистор 4,7 кОм к шине +5 В, то двигатель не будет останавливается.

И напоследок, вернувшись немного назад, были сняты формы сигналов на выводах W и V микросхемы HA13555 относительно общего провода (рис. 17).

Самое простое прикладное применение старого HDD – небольшой наждак для правки свёрл, ножей, отвёрток (рис.18). Для этого достаточно наклеить на магнитный диск наждачную бумагу. Если «винт» был с несколькими «блинами», то можно сделать сменные диски разной зернистости. И здесь хорошо бы иметь возможность переключения скорости вращения шпиндельного двигателя, так как при большом количестве оборотов очень легко перегреть затачиваемую поверхность.

Наждак, конечно, не единственное применение для старого HDD. В сети легко находятся конструкции пылесосов и даже аппарата для приготовления сладкой ваты…

В дополнении к тексту находятся упомянутые даташиты и файлы печатных плат внешних генераторов импульсов в формате программы Sprint-Layout 5-ой версии (вид со стороны печати, микросхемы устанавливаются как smd, т.е. без сверловки отверстий).

Запускаем мотор от hdd. ⁠ ⁠

Запускаем мотор от hdd. Жесткий диск, Электроника, Длиннопост

Спустя 40 с лишним дней мне наконец-то прислали драйвер. За это время я успел найти пару моторчиков от жёстких дисков, и сейчас расскажу как же запустить его. В комплекте к моему драйверу шел «сервотестер», правда на корпусе написано «сервер тестер».
Это устройство генерирует шим сигнал, необходимый для управления драйвером. Имеет три режима:
1)ручной
2) половина газа
3)периодично повышать и понижать обороты.
Цена всего этого комплекта 300 рублей.
На вход подаем 12 вольт, на выходе имеем 3 провода, которые подключаем к двигателю.

Запускаем мотор от hdd. Жесткий диск, Электроника, Длиннопост

Запускаем мотор от hdd. Жесткий диск, Электроника, Длиннопост

Итак, берем мотор, паяем к нему три провода, учтите, что мотор хорошо крутится только против часовой стрелки, это обусловлено строением системы подшипников.

Запускаем мотор от hdd. Жесткий диск, Электроника, Длиннопост

Запускаем мотор от hdd. Жесткий диск, Электроника, Длиннопост

В позапозапрошлом посте я писал, для того чтобы изменить направление вращения BDLC мотора достаточно поменять местами два провода идущие к обмоткам.

Запускаем мотор от hdd. Жесткий диск, Электроника, Длиннопост

Схема готова, подаем питание 11-12 вольт и смотрим:)

Запускаем мотор от hdd. Жесткий диск, Электроника, Длиннопост

Мотор запускается, вы имеете возможность регулировать обороты) Токопотребление в районе 1 ампера.

Запускаем мотор от hdd. Жесткий диск, Электроника, Длиннопост

Таким образом вы можете запустить любой мотор от hdd или dvd прикрепить наждачный круг и пользоваться наждаком.
Всем спасибо, хорошего дня:)

Супер, ставим пропеллер на мотор ДВД, раскручиваем на 26000 оборотов и получаем пулемет, стрелявший лопостями!

А как же ссылка на устройство?)

А к вот такому движку от диска куда цеплять?

Иллюстрация к комментарию

а если использовать в квадракоптерах получиться?

Как устроен жёсткий диск и принцип работы HDD и SSHD⁠ ⁠

Жёсткий диск может хранить в себе большое количество данных, но знаете ли вы как он устроен внутри или принцип его работы?

Так вот я вам наглядно покажу. HDD состоит из двух частей. Корпус, чёрного цвета и прикрытый крышкой, это гермоблок. Плата на обратной стороне, это контроллер. О нём я расскажу чуть позже. А сейчас посмотрим что внутри гермоблока.

Как устроен жёсткий диск и принцип работы HDD и SSHD Жесткий диск, Память, Компьютерное железо, Компьютерная графика, Электроника, Компьютер, Диски, ПК, Информатика, Технологии, Устройство, Видео, Длиннопост

Открыв крышку, сразу бросается в глаза большая блестящая пластина, занимающая большую часть корпуса и зажатая шайбой. Это и есть сам жесткий диск, их кстати может быть несколько расположенных один над другим.

Как устроен жёсткий диск и принцип работы HDD и SSHD Жесткий диск, Память, Компьютерное железо, Компьютерная графика, Электроника, Компьютер, Диски, ПК, Информатика, Технологии, Устройство, Видео, Длиннопост

Пластины крепятся на шпиндель электромотора, который заставляют их вращаться со скоростью 7200 об/мин, а контроллер поддерживает постоянную скорость вращения при помощи контактов на обратной стороне корпуса, через них же и осуществляется питание. Именно на пластинах хранятся все данные, причём не только пользовательские, но и служебные необходимые самому устройству.

Как устроен жёсткий диск и принцип работы HDD и SSHD Жесткий диск, Память, Компьютерное железо, Компьютерная графика, Электроника, Компьютер, Диски, ПК, Информатика, Технологии, Устройство, Видео, Длиннопост

Чем больше пластин, тем больше информации может вместить устройство, а выполнены они обычно из металлических сплавов (хотя были попытки делать их из пластика и даже стекла, но они были не долговечны, встречаются даже керамические диски).

Покрыты пластины ферромагнитным слоем, который и хранит всю информацию. Этот слой разбивается на сотни тысяч узких дорожек, каждая из дорожек разделена на секторы это позволяет определять, куда записывать и где считывать информацию. А вся карта о секторах и дорожках находится в памяти контроллера.

Как устроен жёсткий диск и принцип работы HDD и SSHD Жесткий диск, Память, Компьютерное железо, Компьютерная графика, Электроника, Компьютер, Диски, ПК, Информатика, Технологии, Устройство, Видео, Длиннопост

Ну а чтобы записать данные, над диском с большой скоростью движется металлический кронштейн, который называется коромысло, на его конце находятся слайдеры с магнитными головками.

Как устроен жёсткий диск и принцип работы HDD и SSHD Жесткий диск, Память, Компьютерное железо, Компьютерная графика, Электроника, Компьютер, Диски, ПК, Информатика, Технологии, Устройство, Видео, Длиннопост

Головка проходя над дорожкой намагничивает микроскопическую область на ферромагнитном слое, устанавливая магнитный момент такой ячейки в одно из состояний «0» или «1», а с помощью улавливания магнитного потока происходит считывание информации, когда головка проходит над областью с измененной полярностью, она фиксирует импульс напряжения, этот импульс считывается как единица, а его отсутствие как 0,(каждый такой 0 и 1 называется «бит»). Считываемые головкой сигналы очень слабы и перед отправкой на контроллер должны проходить через усилитель. Отвечающий за это чип находится с боку коромысла (preamplifier).

Как устроен жёсткий диск и принцип работы HDD и SSHD Жесткий диск, Память, Компьютерное железо, Компьютерная графика, Электроника, Компьютер, Диски, ПК, Информатика, Технологии, Устройство, Видео, Длиннопост

Вся эта конструкция приводится в движение при помощи привода основанном на электромагнетизме. Который называется сервопривод. Вот он позиционирует коромысло в то место, куда нужно записать или откуда считать информацию и управляется интегральной микросхемой. Внутри он состоит из двух мощных неодимовых магнитов, катушки и фиксатора. Фиксатор предотвращает какие-либо движения головок в отключенном состоянии и пока шпиндель не наберёт обороты. Всё это важно, потому что от этой конструкции зависит долговечность головок, а от скорости и точности перемещения коромысла зависит время поиска данных на поверхности пластин. Интересно ещё то что головка коромысла обычно не соприкасается с дисками, а парит над ними при помощи восходящих воздушных потоков на расстоянии примерно 10 нм от крутящейся пластины благодаря аэродинамической форме слайдера.

Как устроен жёсткий диск и принцип работы HDD и SSHD Жесткий диск, Память, Компьютерное железо, Компьютерная графика, Электроника, Компьютер, Диски, ПК, Информатика, Технологии, Устройство, Видео, Длиннопост

А так как это очень маленькие расстояния, и все детали движутся на огромных скоростях. Внутри корпуса есть циркуляционный фильтр (recirculation filter), он находится на пути потоков воздуха, создаваемый вращением пластин, этот фильтр постоянно собирает и задерживает мельчайшие частицы которые могли бы повредить пластины и хранящуюся на них информацию или вывести из строя магнитную головку. Кроме него, на обратной стороне корпуса и на крышке имеются маленькие, почти незаметное отверстия (breath hole). Они служит для выравнивания давления и прикрыты фильтром (breath filter), которые так же задерживают частицы пыли и влаги.

Как устроен жёсткий диск и принцип работы HDD и SSHD Жесткий диск, Память, Компьютерное железо, Компьютерная графика, Электроника, Компьютер, Диски, ПК, Информатика, Технологии, Устройство, Видео, Длиннопост

Внутренности гермоблока мы рассмотрели, давайте теперь вернёмся к контроллеру, так как очень сложная и важная часть жёсткого диска. Эта плата с разъёмами представляет собой интегральную схему, которая синхронизирует работу диска с компьютером и управляет всеми всеми процессами внутри hdd. Перевернув плату, можно увидеть что это целый микрокомпьютер со своим процессором, оперативной и постоянной памятью и есть своя система ввода/вывода.

Как устроен жёсткий диск и принцип работы HDD и SSHD Жесткий диск, Память, Компьютерное железо, Компьютерная графика, Электроника, Компьютер, Диски, ПК, Информатика, Технологии, Устройство, Видео, Длиннопост

Чип с большим количеством ножек это MCU — контроллер который занимается всеми расчётами и преобразует аналоговый сигнал с головки в цифровой и наоборот. Для ускорения этих операций рядом распаян чип с памятью DDR SDRAM. Который служит в роли буфера для хранения промежуточных данных, которые уже считаны с жесткого диска, но еще не были переданы для дальнейшей обработки, а также для хранения данных, к которым система обращается довольно часто.

Читать статью  Как сделать флешку жестким диском

Как устроен жёсткий диск и принцип работы HDD и SSHD Жесткий диск, Память, Компьютерное железо, Компьютерная графика, Электроника, Компьютер, Диски, ПК, Информатика, Технологии, Устройство, Видео, Длиннопост

А вот два других крупных чипа это Flash память и её контроллер. Они действует как большой кэш для часто используемых данных, для повышения производительности. Но эти чипы устанавливаются только в гибридных HDD и в большенстве дисков их нет.

(по сути это ssd внутри hdd=SSHD).

Как устроен жёсткий диск и принцип работы HDD и SSHD Жесткий диск, Память, Компьютерное железо, Компьютерная графика, Электроника, Компьютер, Диски, ПК, Информатика, Технологии, Устройство, Видео, Длиннопост

Так же, важным чипом является контроллер управления двигателем и головками VCM controller, так как, он управляет питанием MCU, Блоком магнитных головок внутри гермозоны и двигателем hdd.

Как устроен жёсткий диск и принцип работы HDD и SSHD Жесткий диск, Память, Компьютерное железо, Компьютерная графика, Электроника, Компьютер, Диски, ПК, Информатика, Технологии, Устройство, Видео, Длиннопост

Так же на плату устанавливаются датчики вибрации (shock sensor) которые определяет уровень тряски и в случаи высокой интенсивности отправляют сигнал VCM контролеру на корректировку движения головок или на их парковку и выключение hdd. В действительности, эти датчики плохо работают, так что лучше не трясти и не ронять жёсткий.

Как устроен жёсткий диск и принцип работы HDD и SSHD Жесткий диск, Память, Компьютерное железо, Компьютерная графика, Электроника, Компьютер, Диски, ПК, Информатика, Технологии, Устройство, Видео, Длиннопост

Компоненты hdd мы рассмотрели, давайте теперь свяжем всё это вместе чтобы был понятен сам принцип работы жесткого диска.

Как устроен жёсткий диск и принцип работы HDD и SSHD Жесткий диск, Память, Компьютерное железо, Компьютерная графика, Электроника, Компьютер, Диски, ПК, Информатика, Технологии, Устройство, Видео, Длиннопост

При подаче питания на Жёсткий диск, двигатель расположенный внутри корпуса начинает раскручивать шпиндель на котором закреплены магнитные пластины. И пока пластины ещё не набрали обороты, чтобы между головкой коромысла и диском образовалась воздушная подушка, головки запаркованы у шпинделя у центра, чтобы не навредить секторам с информацией и самой головке. Как только обороты достигают нужного уровня, сервопривод (электромагнитный двигатель) приводит в движение коромысло, которое уже позиционируется в то место, откуда нужно считать служебную информацию о состоянии жесткого диска и других необходимых сведениях о нем, эта область со служебной информацией называется нулевой дорожкой. После неё уже считываются все остальные данные хранящиеся на диске.

Как устроен жёсткий диск и принцип работы HDD и SSHD Жесткий диск, Память, Компьютерное железо, Компьютерная графика, Электроника, Компьютер, Диски, ПК, Информатика, Технологии, Устройство, Видео, Длиннопост

Ну а в случае когда питание, резко прекращается, двигатель переходит в режим генератора, и энергия от вращения шпинделей превращается в электрическую энергию, благодаря которой, головки безопасно паркуются и не повреждаются.

Как устроен жёсткий диск и принцип работы HDD и SSHD Жесткий диск, Память, Компьютерное железо, Компьютерная графика, Электроника, Компьютер, Диски, ПК, Информатика, Технологии, Устройство, Видео, Длиннопост

Как вы видите, жёсткий диск удивительное и сложное инженерное устройство. Надеюсь, что я смог достаточно понятно и подробно представить для вас базовую информацию об его устройстве.

Похожие публикации:

  1. Как получить название товара woocommerce
  2. Как получить число пи делением
  3. Как пользоваться vpn 1111
  4. Как поменять stylesheet у одной ячейки qt

Как работает жесткий диск и основы диагностики на примере HDDScan

Как работает жесткий диск и основы диагностики на примере HDDScan

Низкая производительность компьютера не всегда исчисляется возрастом процессора или видеокарты. На мощность сборки могут влиять и другие комплектующие. Например, отзывчивость компьютера сильно зависит от качества дисков. Пусть в нем будет хоть дюжина ядер — если диск не может «прокормить» столько ртов, то комфортной работы в таких условиях не добиться. Эту проблему полностью решили с помощью твердотельных накопителей с высокими скоростями, но основной сегмент объемных накопителей все еще населяют старые добрые винчестеры. Их особенность такова, что со временем они начинают «сыпаться» и значительно снижают производительность. Чтобы отловить подлеца и вернуть свежесть рабочей лошадке, положимся на специальный софт. В нашем примере это утилита HDDScan. Заодно посмотрим, что она умеет делать с SSD.

Скорость работы диска прямо пропорционально влияет на производительность компьютера. Все потому, что на диске хранятся не только фотографии и музыка, но и тысячи мелких системных файлов, к которым бесконечно обращается процессор во время работы. Соответственно, чем быстрее он получает необходимые данные, тем счастливее пользователь.

Вообще, специфику доставки файлов с диска можно сравнить с работой курьера. Если дорога ровная, пустая и без пробок, то товар доберется до покупателя мгновенно. Когда курьер каждый раз попадает на красный сигнал светофора или просто физически не может ехать быстрее из-за ям и кочек, доставка пиццы или видеокарты затягивается.

Так и со скоростью работы диска: чем меньше препятствий найдется на пути к оперативной памяти и процессору, тем быстрее работает компьютер. Только вместо светофоров и дорог здесь свои нюансы, а такое примитивное сравнение помогает легко разобраться в том, как работают накопители, и для чего нужно проверять диски на битые секторы. Начнем с классики.

Как работает жесткий диск

Обойдем дебри радиоэлектроники стороной и поверхностно рассмотрим конструкцию жесткого диска. Обычный винчестер состоит из четырех основных деталей:

  • Плата с управляющей электроникой
  • Двигатель
  • Магнитные диски (пластины)
  • Считывающие головки

На пластинах содержится информация в виде намагниченных секторов. Каждый сектор может содержать от 512 байт данных. Он находится в связке с другими на треке. Треков у пластины тоже несколько, их количество зависит от плотности. Для чтения информации используются магнитные «головки», которые молниеносно двигаются по всей поверхности пластины и считывают сектор за сектором.

В идеальных условиях головка должна последовательно считывать каждый сектор в одном треке и плавно переезжать на следующий по мере чтения информации, как это происходит при проигрывании виниловых пластинок. Но дело в том, что информация на диске раскидана по всей поверхности, что значительно усложняет скорость доступа к определенным секторам.

Представим, что нужно собрать 100 яблок. В саду растет 100 деревьев и между ними расстояние 100 метров. Условие такое: один человек собирает яблоки только с одного дерева, другой собирает только по одному с каждого. Конечно, первый наберет нужное количество в несколько раз быстрее, потому что не будет затрачивать время на беготню между деревьями.

То же самое происходит и в жестком диске — только вместо людей там магнитные головки, вместо яблок — секторы, а за стометровку принят трек. Впрочем, работу диска лучше посмотреть вживую:

Так работает подвижная часть устройства, которая управляется материнской платой. На ней расположены основные элементы:

  • Процессор
  • Оперативная память
  • Чип с прошивкой
  • Контроллер управления двигателем

Система управления диском работает подобно настоящему компьютеру: чем мощнее процессор и больше оперативной памяти у диска, тем быстрее он обрабатывает данные с магнитных пластин. Соответственно, у таких устройств бывают сбои и проблемы аппаратного характера.

Как ломается жесткий диск

Бить нельзя ронять

Конечно, физически сломать диск пополам не так просто, а вот повредить некоторые детали во время работы можно легко. Первое, чего боится винчестер, это удар или падение во время работы. Считывающая головка находится прямо над магнитной пластиной и при резком ударе обязательно коснется ее поверхности, потому что зазор между ними меньше, чем отпечаток пальца человека:

А пластина в это время вращается со скоростью 7200 об/мин. После такого «касания» диск можно выкидывать:

Чтобы исключить случаи с «запилами» на пластинах, производители научили головки парковаться. Теперь считывающее устройство при отсутствии задания на чтение и запись отъезжает в безопасное место и не «нависает» над вращающимся диском. И тогда бей, пинай — диску все равно (шутка).

Количество включений и заклинивание шпинделя

На продолжительность безотказной работы диска также влияет количество раскручиваний шпинделя, который вращает магнитные пластины. При включении двигатель потребляет повышенные токи по сравнению с рабочим состоянием, поэтому драйвер, который управляет его скоростью, может запросто вылететь от перегрузки.

Это вряд ли грозит новому диску, но легко может подкосить пожилой накопитель. Поэтому для «послуживших» рекомендуют отключать функции энергосбережения и сна, чтобы не провоцировать технику повышенным потреблением.

Читать статью  Как Запустить CHKDSK /F /R /X для Исправления Ошибок Жесткого Диска в Windows 10/8/7

Обратная сторона такого подхода — нагрев. Если не следить за рабочими температурами винчестера, можно довести его до ручки и перегреть. Из-за этого уменьшается тепловой зазор в движущихся частях двигателя и, как следствие, выдавливается смазка. Работа без масла и охлаждения приводит к заклиниванию шпинделя.

«Посыпался»

Диск рассыпается, конечно, не в прямом смысле, просто выходят из строя секторы с данными. Те, которые содержат по 512 байт информации и располагаются в треках. Причиной повреждения секторов может быть физическое воздействие на пластины — запилы от головок или попадание и растаскивание грязи по дискам. Также на целостность магнитной поверхности влияет температурный режим накопителя и просто количество часов наработки.

При считывании информации каждому сектору необходимо время, чтобы намагнититься или размагнититься. Свежие и шустрые секторы (блоки) делают это очень быстро, поэтому новый диск всегда работает заметно шустрее. Когда реакция блоков на изменения состояния снижается, то время, которое необходимо для полного считывания информации из сектора, увеличивается. А за ним снижается и скорость.

Модифицируем наш пример с яблоками. фрукты, висящие на нижних ветках, собирать легче и быстрее, а те, которые поспели на верхушке, достать тяжело. Соответственно, чем быстрее достает до яблока сборщик, тем быстрее наберется нужное количество. А тот, кто полезет за фруктом на вершину, будет тормозить весь процесс.

Если блоки не отвечают на запросы считывающих головок, их считают битыми или бэдами (сокращение от bad block — «плохой блок»). Такие блоки появляются на всех винчестерах без исключения и даже попадаются на новых дисках с завода. Это издержки технологии производства магнитных накопителей. Тем не менее, это и единственная частая поломка, которую можно найти самостоятельно в домашних условиях. Для этого существуют специальные утилиты, к одной из которых мы и обратимся за помощью.

Находим и устраняем BADы

Для поиска «плохишей» на поверхности магнитных пластин используется разный софт. Некоторые программы работают только в системе DOS, другие можно запустить в Windows. Одна из таких утилит HDDScan. Это очень простая программа и она заточена под быстрый прогон дисков и поиск битых секторов, чем мы и займемся. Для этого нам нужны добровольцы — это винчестер 3.5 для настольных компьютеров и старый ноутбучный 2.5 диск. Посмотрим, у кого из них завелись «плохиши».

S.M.A.R.T

При первом запуске программы необходимо выбрать, над каким устройством будем ставить эксперименты.

Затем можно перейти во вкладку SMART, чтобы узнать о состоянии диска, которое мониторится с помощью программы самотестирования в прошивке диска. Для этого щелкаем первую кнопку в программе и смотрим на вывод.

Зеленые точки — все классно. Желтые восклицательные знаки обращают внимание на недочеты в работе. Именно в этом диске система SMART говорит о превышении переназначенных секторов и множественных ошибках чтения информации. Коды ошибок — 005, 197 и 198.

Что такое переназначенный сектор — это область, которая выпала из магнитной пластины и была переназначена на дополнительное место, где для таких случаев производитель оставляет некоторое количество запасных секторов. Их запас ограничен, поэтому при исчерпании лимита диск ругается на превышение.

Так выглядит SMART исправного винчестера:

Тест поверхности диска

Отлавливать плохие блоки интересно, но очень долго. Причем длительность проверки поверхности будет зависеть от объема жесткого диска. Хорошо, что для тестов к нам в руки попали модели с небольшим объемом, а один диск — еще и битый до чертиков. Другими словами, то, что нужно для наглядного тестирования. Итак, выбираем нужный накопитель в программе и щелкаем по кнопке «Tests».

Программа предложит четыре варианта тестирования:

  • Verify — диск будет считывать блоки и записывать информацию к себе в буфер (та самая ОЗУ на плате диска);
  • Read — то же самое, только информация о блоках будет передаваться через SATA в компьютер;
  • Butterfly — аналогично тесту Read, но блоки считываются попарно: первый блок участка и последний, и так пока не будут проверены все секторы на треке;
  • Erase — название говорит само за себя: при тестировании блоки будут перезаписаны нулями (это нужно для полного форматирования диска без возможности восстановления данных).

Для наших экспериментов достаточно Verify. Щелкаем и запасаемся терпением: спим, гуляем, работаем, играем.

Во время теста программа будет рисовать квадраты. Это блоки. Каждый заполняется определенным цветом исходя из скорости отклика: чем быстрее блок, тем меньше времени ему нужно на отклик. Время отзыва измеряется в миллисекундах и указывается справа в окне программы. Там же указано общее количество блоков. Этот диск исправен и блоки в нем довольно отзывчивые, основная часть из них работает быстрее 10 миллисекунд. Три — самые быстрые и еще три отзываются за 20 мс. Такой диск посыпаться не должен.

Теперь проверим другой накопитель, который был снят с ноутбука из-за низкой производительности. Включаем тот же тест:

Вот они, «плохиши». Буквально с самого запуска посыпались бэды. А еще кучка разноцветных блоков. Это самые ленивые точки на поверхности диска, которые очень долго реагируют на команды и скоро превратятся в Bads — блоки, которые вышли из строя полностью и являются фактически пробоинами на поверхности пластин.

Для сравнения, вот что показывает пятилетний SSD в этом же тесте:

Почти все блоки отвечают за 5 мс и меньше. Это не удивительно, ведь SSD-диски твердотельные и не имеют намагниченных пластин. Они менее склонны к деградации от физических воздействий и не реагируют на попадание грязи. Зато у них есть микросхемы памяти, которые непременно начнут терять «банки» после преодоления заводского лимита на перезапись. Для каких-то дисков это 100 терабайт, для каких-то — больше. Этот SSD сыпется из-за большого пробега:

Прочие возможности

Программа умеет показывать температуру накопителей. При тестировании винчестеры работают на износ и ощутимо нагреваются, поэтому необходимо обязательно следить за температурой и создавать хорошие условия для охлаждения дисков:

В разделе Tools -> Features есть несколько функций для тонкой настройки:

  • Automatic Acoustic Management — позволяет установить скорость передвижения головок, чтобы уменьшить шум ценой снижения производительности.
  • Advanced Power Management — то же самое, только регулирует скорость шпинделя.
  • Power Management — время, через которое диск уйдет в сон.
  • Spindle Control — принудительное управление шпинделем (двигателем).

Поддержка этих функций зависит от накопителя, поэтому некоторые из них могут быть недоступны для регулировки.

Когда нужно подыскивать замену

Программа позволяет быстро проверить состояние накопителей, причем не только HDD, но и современных SSD. Это пока доступно не всем утилитам, а HDDScan в этом плане удобна и интуитивна. Тем более, что утилита запускается из под работающей системы и не требует создания загрузочного диска.

Очевидный вопрос читателя — как понять, что диск скоро начнет сыпаться и когда начинать поиск замены. Для этого ориентируемся на количество разноцветных блоков:

Видно, что диск еще не теряет секторы, но несколько цветных блоков портят картину и указывают на то, что поверхность пластин уже изнашивается. При интенсивном использовании этого накопителя красные и зеленые блоки превратятся в бэды. Эти блоки, между прочим, очень заметны в играх и проявляют себя как фризы или даже вылеты. Так диск начинает сыпаться. Крайне не рекомендуется хранить на нем важную информацию.

Поэтому стоит подумать о замене старого доброго винчестера на новый или переехать на современный твердотельный диск с высокой скоростью. К слову, последние все чаще становятся доступны даже для сборки бюджетных систем.

Источник https://ritorika.com.ua/obuchenie/15/kak-proverit-dvigatel-zhestkogo-diska

Источник https://club.dns-shop.ru/blog/t-107-jestkie-diski/41222-kak-rabotaet-jestkii-disk-i-osnovyi-diagnostiki-na-primere-hddsca/

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *